Transformed implicit-explicit DIMSIMs with strong stability preserving explicit part
نویسندگان
چکیده
منابع مشابه
Optimal Explicit Strong - Stability - Preserving
This paper constructs strong-stability-preserving general linear time-stepping methods that are well suited for hyperbolic PDEs discretized by the method of lines. These methods generalize both Runge–Kutta (RK) and linear multistep schemes. They have high stage orders and hence are less susceptible than RK methods to order reduction from source terms or nonhomogeneous boundary conditions. A glo...
متن کاملImplicit-explicit schemes based on strong stability preserving time discretisations
In this note we propose and analyze an implicit-explicit scheme based on second order strong stability preserving time discretisations. We also present some theoretical and numerical stability results for second order Runge Kutta IMEX schemes.
متن کاملImplicit - explicit methods based on strong stability preserving multistep time discretizations ⋆ Thor
In this note we propose and analyze novel implicit-explicit methods based on second order strong stability preserving multistep time discretizations. Several schemes are developed, and a linear stability analysis is performed to study their properties with respect to the implicit and explicit eigenvalues. One of the proposed schemes is found to have very good stability properties, with implicit...
متن کاملJu n 20 06 Implicit - explicit methods based on strong stability preserving multistep time discretizations ⋆
In this note we propose and analyze novel implicit-explicit methods based on second order strong stability preserving multistep time discretizations. Several schemes are developed, and a linear stability analysis is performed to study their properties with respect to the implicit and explicit eigenvalues. One of the proposed schemes is found to have very good stability properties, with implicit...
متن کاملGlobal optimization of explicit strong-stability-preserving Runge-Kutta methods
Strong-stability-preserving Runge-Kutta (SSPRK) methods are a type of time discretization method that are widely used, especially for the time evolution of hyperbolic partial differential equations (PDEs). Under a suitable stepsize restriction, these methods share a desirable nonlinear stability property with the underlying PDE; e.g., positivity or stability with respect to total variation. Thi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Numerical Algorithms
سال: 2019
ISSN: 1017-1398,1572-9265
DOI: 10.1007/s11075-018-0647-3