Transformed implicit-explicit DIMSIMs with strong stability preserving explicit part

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal Explicit Strong - Stability - Preserving

This paper constructs strong-stability-preserving general linear time-stepping methods that are well suited for hyperbolic PDEs discretized by the method of lines. These methods generalize both Runge–Kutta (RK) and linear multistep schemes. They have high stage orders and hence are less susceptible than RK methods to order reduction from source terms or nonhomogeneous boundary conditions. A glo...

متن کامل

Implicit-explicit schemes based on strong stability preserving time discretisations

In this note we propose and analyze an implicit-explicit scheme based on second order strong stability preserving time discretisations. We also present some theoretical and numerical stability results for second order Runge Kutta IMEX schemes.

متن کامل

Implicit - explicit methods based on strong stability preserving multistep time discretizations ⋆ Thor

In this note we propose and analyze novel implicit-explicit methods based on second order strong stability preserving multistep time discretizations. Several schemes are developed, and a linear stability analysis is performed to study their properties with respect to the implicit and explicit eigenvalues. One of the proposed schemes is found to have very good stability properties, with implicit...

متن کامل

Ju n 20 06 Implicit - explicit methods based on strong stability preserving multistep time discretizations ⋆

In this note we propose and analyze novel implicit-explicit methods based on second order strong stability preserving multistep time discretizations. Several schemes are developed, and a linear stability analysis is performed to study their properties with respect to the implicit and explicit eigenvalues. One of the proposed schemes is found to have very good stability properties, with implicit...

متن کامل

Global optimization of explicit strong-stability-preserving Runge-Kutta methods

Strong-stability-preserving Runge-Kutta (SSPRK) methods are a type of time discretization method that are widely used, especially for the time evolution of hyperbolic partial differential equations (PDEs). Under a suitable stepsize restriction, these methods share a desirable nonlinear stability property with the underlying PDE; e.g., positivity or stability with respect to total variation. Thi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Numerical Algorithms

سال: 2019

ISSN: 1017-1398,1572-9265

DOI: 10.1007/s11075-018-0647-3